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a b s t r a c t

We develop an efficient spatially high-order, Cartesian-mesh, hybrid, center-difference,
limiter methodology for numerical simulations of compressible multicomponent flows
with isotropic Mie-Grüneisen equation of state. Effective switching between center-differ-
ence and limiter schemes is achieved by a set of robust tolerance and Lax-entropy based
criterion [18]. Oscillations that could result from a mixed stencil scheme are minimized
by requiring that the limiter method approaches the center-difference method in smooth
regions. To achieve this the limiter is based on a norm of the deviation of WENO recon-
struction weights from ideal. Results from a spatially 4th order version of the methodology
are presented in one and two dimensions utilizing the California Institute of Technology’s
VTF (Virtual Test Facility) AMROC [7] software.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In the presence of shocks and interfaces, compressible flows involve both smooth and nearly discontinuous features.
Adequate treatment of such features is best achieved by different schemes. In smooth regions a low-numerical dissipation
skew-symmetric kinetic-energy preserving scheme is desirable and can be achieved by a low-cost center-difference method.
Alternatively, though generally more numerically expensive, at shocks and sharp interfaces it is desirable to have a scheme
with sufficient upwinding to prevent oscillations. Hybrid methodology therefore presents an effective approach to improving
overall solver performance by selectively applying schemes to different regions. Furthermore, the ability to achieve low dis-
sipation in smooth regions of flow is of primary interest when applying explicit turbulence models [2,10,24,19]. Proper cre-
ation of such a hybrid of scheme is not trivial and requires special attention to detail. In general no guarantee of stability can
be made. Additionally, differences in dispersion relation can cause spurious oscillations and large errors in regions where
schemes meet and switch.

Constructing a hybrid solver that combines center-difference and upwinding methods for multiphase flows with Mie-
Grüneisen equations of state poses a special challenge in that the typically applied flux-splitting WENO reconstruction ap-
proach fails to prevent catastrophic oscillations at contacts. For perfect gases a substantial literature on hybrid solvers exists
focusing on the use of such WENO solvers [2,10,24] while not addressing this problem. These reconstruct fluxes directly,
employing a flux-splitting approach that maintains global conservation. These conservative WENO methods have great ap-
peal for building hybrid solvers in that they allow for the choice of an ideal stencil in smooth regions of a solution, construct-
ing the ideal stencil from a smoothness dependent weighting of sub stencils. This allows for the dispersion relationship of the
two schemes used in a hybrid scheme to be matched for small wave numbers [10]. Although smooth transition between
schemes is achieved, a significant short-coming of such conservative solvers is that catastrophic oscillations can develop
. All rights reserved.
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in multicomponent mixtures [1]. A primitive WENO reconstruction based Roe Riemann solver [27] has been developed by
Johnsen and Colonius [12] that prevents such oscillations in mixtures of perfect gases. However, the stencil associated with
any such Riemann solver is dependent on the flow locally and therefore the dispersion relation is complex and does not lend
itself to hybrid methodology. For multiphase flows with Mie-Grüneisen equations of state, Miller and Puckett [21] developed
a volume of fluid approach that utilizes an approximate Riemann solver, again yielding no ideal stencil for smooth flows.
Likewise, Shyue [31] has extended Roe’s approximate Riemann solver for multiphase Mie-Grüneisen flows. Simplistic at-
tempts to form hybrid solvers by low-order smoothness measure based blending of schemes have been made for conserva-
tive flux-splitting solvers [2,24].

Presently, in order to address the above issues, we construct a more rigorous blending methodology based on a norm of
the deviation of local smoothness dependent WENO reconstruction weights. In devising our limiter we draw on similarities
between WENO and classical flux and slope limiter type methods, providing practical insight. Doing so yields a generalized
limiter useful for smoothly blending a lower order upwinding Riemann solver and high-order center-difference scheme
while maintaining high-order convergence for smooth flows. We first apply the limiter methodology to the linear advection
equation, building 4th- and 6th-order schemes and providing comparison to standard 3rd- and 5th-order WENO methods.
We proceed to give a detailed description of a spatially 4th-order finite difference patch solver for the multiphase Euler equa-
tions with special consideration for the Mie-Grüneisen equation of state. The implementation combines spatially 4th-order,
skew-symmetric, kinetic-energy preserving center-difference and a 2nd-order WENO-Roe Riemann approach. Hybridization
is achieved for the solver through Lax-entropy conditions and gradient tolerances. We initially demonstrate the new scheme
for solids modeled by isotropic Mie-Grüneisen equations of state in one dimension. We follow up by applying the method-
ology in two dimensions with adaptive mesh refinement capabilities utilizing the California Institute of Technology’s VTF
AMROC software [7].

2. Equation of state background

We begin by providing background on isotropic Mie-Grüneisen equations of state for solids. In a completely general man-
ner, an isotropic equation of state can be rigorously constructed about a parametric reference state curve through an integral
equation. Choosing to construct pressure as a function of internal energy and density leads to the very convenient Mie-Grün-
eisen formalism
pðq; eÞ ¼ pref ðqÞ þ q
Z e

eref ðqÞ
Cðq; e0Þde0; ð1Þ
where pref ðqÞ and eref ðqÞ form a density parameterized reference state curve and Cðq; eÞ is the Grüneisen parameter defined
by
Cðq; eÞ ¼ 1
q
@p
@e

����
q
: ð2Þ
Any given material is then well defined thermodynamically by pref ðqÞ; eref ðqÞ, and Cðq; eÞ. In practice, whether analytic or
tabulated, these three functions should, at a minimum, result in the thermodynamic stability of the material modeled in
state regions of interest [21].

2.1. Hugoniots as reference state curves

For the simulation of compressible flows involving shocks it is convenient to use shock-Hugoniots for reference state
curves. For many solids of interest, starting from state q0; p0; e0, experimental data indicates that over a large range of shock
strengths the relationship between shock and particle speed is adequately approximated by a simple linear fit
us ¼ c0 þ rup; ð3Þ
where us is the shock’s speed, up is the post-shock-particle speed, c0 is the unshocked medium’s speed of sound, and r is
related to the unshocked medium’s isentropic derivative of the bulk modulus Ks with respect to pressure
Ks ¼
@LnðpÞ
@q

����
s

;

r ¼ @Ks

@p

����
s

þ 1
� ��

4:
ð4Þ
Utilizing (3) and the three Rankine–Hugoniot jump conditions for conservation of mass, momentum, and energy,
q ¼ q0us=ðus � upÞ;
p ¼ p0 þ q0usup;

e ¼ e0 þ
1
2
ðpþ p0Þð1=q0 � 1=qÞ;

ð5Þ
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results in the internal pressure and energy parametrized as functions of density along the shock-Hugoniot,
Fig. 1.
availab
pHðqÞ ¼ p0 þ
c2

0ð1=q0 � 1=qÞ
½1=q0 � rð1=q0 � 1=qÞ�2

; ð6Þ

eHðqÞ ¼ e0 þ
1
2
ðpHðqÞ þ p0Þð1=q0 � 1=qÞ: ð7Þ
Additionally, for many solids it is found that the Grüneisen parameter is well approximated by
Cðq; eÞ ¼ C0
q0

q

� �q

¼ CHðqÞ: ð8Þ
In terms of internal energy this is a 1st order approximation to Cðq; eÞ near the Hugoniot:
Cðq; eÞ ¼ Cðq; eHðqÞÞ þ
@C
@e

����
q;eH ðqÞ

ðe� eHðqÞÞ þ � � � ¼ CHðqÞ þ OðDeÞ: ð9Þ
Thus we have an equation of state that is guaranteed to be at least 1st order in internal energy near the central Hugoniot with
pðq; eÞ ¼ pHðqÞ þ qCHðqÞðe� eHðqÞÞ: ð10Þ
Generally, (6) and (7) are only valid for compressed states q > q0. For expanded states a 2nd order isentropic continuation to
the Hugoniot known as a Murnaghan isentrope is sometimes used [21]:
pHðqÞ ¼ p0 þ
q0c2

0

4r� 1

� �
q
q0

� �4r�1

� q0c2
0

4r� 1
; ð11Þ

eHðqÞ ¼ e0 þ
Z q

q0

pHðqÞ
q2 dq: ð12Þ
2.2. Equation of state limitations

Construction of a central Hugoniot utilizing the assumption of a linear shock-particle speed relationship and Murnaghan
isentrope extension for expanded states result in two notable limitations. First, using a simple linear fit to the relationship
between shock and particle speed causes a singularity in the equation of state that results in a nonphysical maximum density
qmax ¼
q0

1� 1=r
; ð13Þ
Forbidden and allowed state regions for Aluminum modeled by a Mie-Grüneisen equation of state with a shock-Hugoniot reference state curve. The
le states are bounded by negative temperature, a nonphysical minimum pressure pmin ¼

�q0 c2
0

4r�1 , and a nonphysical maximum density qmax ¼
q0

1�1=r.
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when r > 1, as is typical for solids. Second, analysis of isentropes created by the extension of the Hugoniot for expanded
states via the Murnaghan isentrope demonstrates a nonphysical minimum pressure:
dp
dq

����
s

¼ c1
p
q2 þ c2

1
q2 þ c3q4r�3 þ c4q4r�2 ð14Þ
along any isentrope when q < q0 and p < p0, where c1; c2; c3, and c4 depend on the central Hugoniot constants. Integrating
(14) from initial conditions qi; pi, and si yields
pðq; siÞ ¼ pi þ
c2

c1

� �
ec1ð1=qi�1=qÞ � c2

c1
þ ec1=q

Z q

qi

c3q0
4r�3 þ c4q0

4r�2
� �

ec1=q0dq0: ð15Þ
When approached from the part of the p� q plane of physical interest, the limit
lim
q!0

pðq; siÞ ! �
c2

c1
¼ �q0c2

0

4r� 1
ð16Þ
is obtained for all associated isentropes when r > 1=2. Therefore no pressures lower than
pmin ¼
�q0c2

0

4r� 1
ð17Þ
are attainable. With q0 > 0; c0 > 0, and r > 0 it is clear that pmin < 0 is typical and therefore negative pressure or tension is
permissible. It is useful to place a tensile strength limitation when tension is expected in a simulation. Additionally, positiv-
ity of absolute temperature must not be violated. Taking constant specific heat for Aluminum yields Fig. 1, giving some face
to the expected p� q plane of validity.

2.3. Mixture rules

Kinetic theory for ideal gas mixtures predicts that total pressure is described by partial pressure summation. For mixtures
of distinct ideal gases this law is easily applied to form an analytic equation of state. However, for most materials such a
simple theory for molecular interactions in mixtures does not exist. Owing to the complexity inherent in providing a physical
mixture model for real materials, previous works addressing the simulation of multiphase flows typically ignore the topic
and assume discontinuous contact between materials, either tracking the contact [21] or smearing it with an ad hoc mixture
rule [3,31] such as a level set, w, average of parameters
xmix
0 ¼

Xn

i¼1

wi
0xi

0; x! q0; p0; e0; . . . ð18Þ
To do better would, at a minimum, require knowledge of q0; p0; e0; . . . as a function of initial volume or mass fraction, data
that is typically not available. In light of the complexity of the physics of mixtures, the ad hoc mixture rule (18) will be uti-
lized presently because of its overall simplicity and robustness.

3. Hybrid limiter methodology

Hyperbolic conservation laws typically describe material behavior containing discontinuities and smooth regions, two
features best addressed by different numerical schemes. At discontinuities a low-order upwinding scheme is ideal for pre-
venting oscillations. Alternatively, in smooth regions of the solution a low dissipation method, often in the form of a centered
difference scheme, is advantageous [2,10,24]. However, applying different schemes directly to different regions can lead to
oscillations in regions where schemes meet if their dispersion relations are not suitably well matched [10]. To avoid this dif-
ficulty, it is important that the stencil associated with one of the schemes tends toward the others in regions where the
schemes will meet. Additionally, flows with mixtures of real materials modeled by Mie-Grüneisen equations of state can de-
velop disastrous oscillations when treated numerically by a conservative flux-splitting numerical scheme [1]. A generalized
limiter approach presents a way to address the above issues simultaneously. In practice the success depends heavily on how
the limiter is defined. Typically the limiter is based on a measure of smoothness locally. In reality it is difficult to achieve the
desired result of the limiter method completely reducing to the desired stencil. For this reason a separate set of criterion
resulting in a sharp cutoff filtering of the limiter is of practical use. In effect, all hybrid schemes may be formulated as limiter
schemes with sharp cutoff filtering of the limiter.

3.1. Limiter methodology

The Lax-Wendroff theorem [15,16,32] indicates proper weak solution convergence for hyperbolic conservation laws can
only be obtained by using a numerical scheme that maintains conservation of certain variables. A practical approach to cre-
ating such a conservative scheme is to define flux derivatives by a symmetric difference of midpoint reconstructions f̂ jþ�1=2 of
order at least k� 2,



G.M. Ward, D.I. Pullin / Journal of Computational Physics 229 (2010) 2999–3018 3003
@f
@x
¼ f̂ jþ1=2 � f̂ j�1=2

Dx
þ OðDxkÞ: ð19Þ
Although primitive quantities are not conserved, the above methodology can be applied uniformly in approximating all
derivatives. Practical application of (19) then only requires a midpoint reconstruction of quantities of interest, namely fluxes
and primitives.

A blending of multiple reconstruction schemes is appealing for achieving different stencils for sharp and smooth features:
f̂ jþ1=2 ¼ f̂ k
jþ1=2 þU f̂ r

jþ1=2 � f̂ k
jþ1=2

� �
: ð20Þ
Here U is a limiter used to achieve the desired blend of f̂ r
jþ1=2 and f̂ k

jþ1=2, rth and kth order midpoint reconstructions, respec-
tively. Typically f̂ r

jþ1=2 is a low-order upwinding scheme and f̂ k
jþ1=2 is a higher order method with less dissipation ðk > rÞ. It is

therefore desirable that U approaches unity at discontinuities and tends toward zero in smooth regions. Additionally, in or-
der to maintain kth order global convergence when a smooth solution is present, it is important to use a limiter with the
property that
U / Dxb; b P k� r: ð21Þ
Defining a good limiter of practical use is a complicated matter [15,16,32]. In the following section we present a structured
way to define a practical limiter for a kth order scheme based on WENO weights.

3.2. WENO weight inspired limiters

Weighted essentially non-oscillatory (WENO) schemes represent a popular subcategory of solvers for hyperbolic partial
differential equations [17,11,29]. At a basic level of interpretation WENO is merely polynomial interpolation by weighted
hierarchy. For practical application to numerical methods on evenly spaced Cartesian grid points, WENO focuses on the
reconstruction of midpoint values, forming a weighted combination of r 1st-order sub stencil interpolations qr

k that tend to-
ward an order 2r � 1 approximation q2r�1

r�1 of function f at x ¼ ðjþ 1=2ÞDx in smooth regions:
fjþ1=2 ¼ q2r�1
r�1 ðfj�rþ1; . . . ; fjþr�1Þ þ

Xr�1

k¼0

wk � Cr
k

� 	
qr

kðfjþk�rþ1; . . . ; fjþkÞ ¼
Xr�1

k¼0

wkqr
kðfjþk�rþ1; . . . ; fjþkÞ: ð22Þ
Here Ck represent ideal sub stencil weighting and wk are variable weights dependent on local solution character. The above
reflects a slope limiter-like approach to the reconstruction of midpoint values. Although not directly in slope limiter form, it
is not to difficult to design weights that yield classic slope limiter or even ENO methods. More commonly weights are defined
systematically by
wk ¼
akPr�1
j¼0 aj

; ð23Þ

ak ¼
Cr

k

ð�þ ISkÞp
; k ¼ 0;1; . . . ; r � 1; ð24Þ
where ISk is a sub stencil smoothness measure, p and � are chosen constants, and Cr
k is the desired sub stencil weight in

smooth solution regions [11].
Noting that slope and flux-limiter approaches are equivalent, it is instructive to re-arrange (22) in a flux-limiter-like form
fjþ1=2 ¼ q2r�1
r�1 ðfj�rþ1; . . . ; fjþr�1Þ þ

Xr�2

k¼0

/kqr
kðfjþk�rþ1; . . . ; fjþkÞ �

Xr�2

k¼0

/kq2r�1
r�1 ðfj�rþ1; . . . ; fjþr�1Þ: ð25Þ
A matrix relationship exists relating the flux-limiters /k and classic WENO weights wk,
AðCrÞ � / ¼ w� Cr: ð26Þ
Taking a norm of the above yields a single generalized limiter,
U ¼ kAkpkkw� Crkp: ð27Þ
It is not surprising that the limiter norm is directly proportional to a norm of the deviation of weights from ideal. Eq. (27)
provides a generalized robust way for defining a limiter for high-order schemes.
4. High-order implementation

4.1. Linear advection equation solver

To demonstrate application of Eq. (27) we first apply the methodology to the linear advection equation,
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@u
@t
þ @u
@x
¼ 0; ð28Þ
creating spatially 4th and 6th order schemes based on high-order center-differences and WENO reconstruction Riemann
solvers.

In constructing a 4th-order method we utilize a standard 4th-order center-difference,
ûCD4
jþ1=2 ¼ �

1
12
ðujþ2 þ uj�1Þ þ

5
12
ðuj þ ujþ1Þ; ð29Þ
combined by limiter with a 3rd-order WENO scheme ûWENO3
jþ1=2 [17],
ûjþ1=2 ¼ ûCD4
jþ1=2 þU ûWENO3

jþ1=2 � ûCD4
jþ1=2

� �
: ð30Þ
Where the limiter is defined by,
U ¼ kw� Crk2: ð31Þ
In evaluating the deviation norm of Eq. (31) we follow the approach of standard 5th order WENO with r ¼ 3 and the pre-
ferred stencil coefficients C3

0 ¼ 1=10; C3
1 ¼ 6=10; C3

2 ¼ 3=10. In determining the weights we follow [11], setting
� ¼ 10�6; p ¼ 2, and using the smoothness measures
IS0 ¼
13
12
ðuj�2 � 2uj�1 þ ujÞ2 þ

1
4
ðuj�2 � 4uj�1 þ 3ujÞ2;

IS1 ¼
13
12
ðuj�1 � 2uj þ ujþ1Þ2 þ

1
4
ðuj�1 � ujþ1Þ2;

IS2 ¼
13
12
ðuj � 2ujþ1 þ ujþ2Þ2 þ

1
4
ð3uj � 4ujþ1 þ 3ujþ2Þ2:

ð32Þ
Likewise, in constructing a 6th-order scheme we utilize the 6th-order center-difference,
ûCD6
jþ1=2 ¼

1
60
ðujþ3 þ uj�2Þ �

2
15
ðujþ2 þ uj�1Þ þ

37
60
ðujþ1 þ ujÞ; ð33Þ
and combine it by limiter with a 5th-order WENO method ûWENO5
jþ1=2 [11],
ûjþ1=2 ¼ ûCD6
jþ1=2 þU ûWENO5

jþ1=2 � ûCD6
jþ1=2

� �
: ð34Þ
It is possible to combine 6th-order center-difference with 3rd-order WENO scheme and still achieve 6th order convergence
for smooth solutions. However, doing so results in higher dissipation at discontinuities. To construct U for the present 6th-
order method from Eq. (27) we utilize 7th order WENO preferred stencil coefficients and smoothness indicators with p ¼ 5,
for which the equations are omitted and can be found in their original source [4].

To form a complete numerical scheme from the above spatial discretization a temporal discretization is then required. For
testing purposes, we apply 4th-order strong-stability preserving Runge–Kutta (SSP RK-4) temporal discretization [9],
qð1Þ ¼ qn þ 1
2

DtLðqnÞ;

qð2Þ ¼ qn þ 1
2

DtLðqð1ÞÞ;

qð3Þ ¼ qn þ DtLðqð2ÞÞ;

qnþ1 ¼ 1
3
ð�qn þ qð1Þ þ 2qð2Þ þ qð3ÞÞ þ 1

6
DtLðqð3ÞÞ;

ð35Þ
4.2. Test problems

For the purposes of comparison we now apply the previously described 4th and 6th order methods, as well as 3rd and 5th
order WENO methods, to the linear advection equation in a periodic domain �1 6 x 6 1 with initial conditions
uðx; t ¼ 0Þ ¼
1; �3=4 < x < �1=4

e�300ðx�0:5Þ2 ; otherwise:

(
ð36Þ
Numerical solutions are shown at the 2000th time step in Fig. 2 for simulation with n ¼ 100 points and CFL ¼ 0:5. The pres-
ent 6th order scheme best captures the solution, retaining the Gaussian’s peak with greater fidelity and having a slightly
sharper approximation to the square wave. Third-order WENO displays a heavily diffuse approximation to the solution,
yielding an approximation with the greatest L2 norm error out of all methods presently examined.

For smooth solutions the convergence rate is simply the order of the method. For hyperbolic partial differential equations,
convergence to weak solutions is of primary interest. To better compare the schemes we next performed a convergence



Fig. 2. Numerical solutions to the linear advection equation in a periodic domain achieved with spatially 3rd and 5th order WENO, present 4th and 6th
order WENO inspired limiter methods, denoted by diamonds and crosses, triangles and circles, respectively. Solution depicted at 2000th time step,
CFL ¼ 0:5 and n ¼ 100.
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study for a square wave in a periodic domain. L2 error norm and convergence rate results from the study are given in Table 1.
To be consistent, for 5th-order WENO we take Dt ¼ ðCFL� DxÞ5=4 and for our 6th-order method Dt ¼ ðCFL� DxÞ3=2. The pres-
ent 6th-order method demonstrates a slightly higher convergence rate to the weak solution then the others. The currently
proposed 4th-order method demonstrates roughly the same convergence rate as that of 5th-order WENO, likely due to the
limiter being based on 5th-order WENO weights.
4.3. Hybrid multiphase Euler solver for Mie-Grüneisen fluids

In the following sections we present a 4th-order spatial patch solver implementation of a WENO weight limiter based
hybrid scheme applicable in up to three dimensions for multiphase flows with Mie-Grüneisen equations of state. Classic
4th-order, center-difference in a skew-symmetric formulation of the energy and momentum equations is used for the ideal
stencil [23]. For the low-order upwinding solver a 3rd-order WENO reconstruction of primitives coupled with a Roe approx-
imate Riemann solver is applied [31]. The limiter used is calculated from WENO weights associated with a 5th-order flux
splitting approach [11]. Temporal discretization is performed by total variation diminishing third-order Runge–Kutta
(TVD-RK3). Hybridization is achieved through a Lax-entropy and gradient tolerance based switching criterion [18,23]. The
California Institute of Technology’s VTF AMROC [7] software is used to apply this patch solver in up to two dimensions with
AMR capability.
4.3.1. Euler compressible flow equations
The Euler equations of multicomponent compressible fluid mechanics model a very specific subgroup of flows of interest.

Under the assumptions made, fluid motion is described by a set of coupled conservative hyperbolic partial differential
equations
Table 1
Square wave L2 error norm and convergence order for t ¼ 2 and CFL ¼ 0:9.

N 3rd order WENO 5th order WENO 4th order Limiter 6th order Limiter
L2 error L2 order L2 error L2 order L2 error L2 order L2 error L2 order

40 0.218306 � 0.189875 � 0.195927 � 0.180998 –
80 0.171496 0.348180 0.143627 0.402720 0.149808 0.387200 0.134949 0.423568
120 0.148070 0.362235 0.122103 0.400422 0.127423 0.399164 0.113716 0.422196
160 0.133336 0.364332 0.108706 0.403973 0.113588 0.399497 0.100573 0.426928
200 0.122895 0.365437 0.099287 0.406142 0.103838 0.402224 0.091383 0.429473
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@q
@t
þ @FðqÞ

@x
þ @GðqÞ

@y
þ @HðqÞ

@z
¼ 0; ð37Þ
where the directional fluxes F;G, and H are given by
FðqÞ ¼

qu

qu2 þ p

quv
quw

uðqEþ pÞ
quw1

..

.

quwn�1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; GðqÞ ¼

qv
qvu

qv2 þ p

qvw

vðqEþ pÞ
qvw1

..

.

qvwn�1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; HðqÞ ¼

qw

qwu

qwv
qw2 þ p

wðqEþ pÞ
qww1

..

.

qwwn�1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; ð38Þ
with conserved vector of state q defined by
q ¼ ðq;qu;qv;qw;qE;qw1; . . . ;qwn�1Þ: ð39Þ
Here E ¼ eþ 1
2 ðu2 þ v2 þw2Þ is the energy per unit mass and wj represents a scalar quantity of interest associated with the

flows jth component. In practice it is useful to track either the scalar mass fraction or a level set associated with each
component.

4.3.2. Preventing pressure oscillations in mixtures
An important fundamental subset of solutions to the Euler equations are those for which pressure and velocity are con-

stant for all time, such as the translation of a pressure matched material interface. Any solver of practical use should be able
to maintain such conditions after each temporal advance of the solution. Designing a scheme that does so for multicompo-
nent flows is not entirely trivial [1]. In practice the degree to which the integrity of such solutions is compromised varies
with the material models. For perfect gases with similar specific heat ratios the degradation may be slow enough to neglect
for some flows of interest. However, this is not the case in general, particularly for flows involving multiple solids modeled
by Mie-Grüneisen equations of state. In addressing the issue here we follow the approach of Shyue [31], tracking three addi-
tional functions of density related to the Mie-Grüneisen equation of state for the mixture and re-writing the conserved scalar
equation in primitive form
@

@t
1
CH

� �
þ u � r 1

CH

� �
¼ �qvCH

r � u;

@

@t
pH

CH

� �
þ u; �r pH

CH

� �
¼ �qvpH

r � u;

@

@t
ðqeHÞ þ u � rðqeHÞ ¼ �qveH

r � u;
@wj

@t
þ u � rðwjÞ ¼ 0; ðj ¼ 1;2; . . . ; n� 1Þ;

ð40Þ
where
vCH
¼ �C0H=C

2
H; ð41Þ

vpH
¼ ðCHp0H � C0HpHÞ=C2

H; ð42Þ
veH
¼ eH þ qe0H; ð43Þ
and prime quantities indicate derivative with respect to density. For example,
C0H ¼
dCH

dq
: ð44Þ
The new vector of state of interest is then
q ¼ ðq;qu;qv;qw;qE;1=CH;pH=CH;qeH;w1; . . . ;wn�1Þ: ð45Þ
Pressure can be obtained directly from the vector of state by the relationship
p ¼ qE� ðquÞ2 þ ðqvÞ2 þ ðqwÞ2

2q
þ pH

CH
� qeH

 !,
1
CH

� �
ð46Þ
and likewise the speed of sound is defined by
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c2 ¼ @p
@q

����
s

¼ @p
@q

����
e

þ p
q2

@p
@e

����
q
¼ CHðeþ p=qþ vpH

� veH
� pvCH

Þ: ð47Þ
It is important to note that simply adding three redundant equations alone is not sufficient to guarantee the prevention of
oscillations. Careful consideration of how rounding error is propagated for constant pressure-velocity solutions must be ta-
ken. In this case, a locally uniform numerical discretization of derivatives in (40) and the rest of the Euler equations yields
ratios in (46) that maintain constant pressure [31].

4.3.3. Center difference
For our 4th-order, center-difference scheme, we use a kinetic-energy preserving skew-symmetric reconstruction of quan-

tities [22,23]. To achieve this the end product of the difference of midpoint reconstructions must be consistent with skew-
symmetric form of the momentum and energy equations,
@ðquvÞ
@x

¼ 1
2
@ðquvÞ
@x

þ 1
2
qu

@v
@x
þ 1

2
v @ðquÞ

@x
; ð48Þ

@ðqEþ pÞu
@x

¼ 1
2
@ðqeuÞ
@x

þ 1
2
qu

@e
@x
þ 1

2
e
@ðquÞ
@x

þ 1
2

u
@ðquvÞ
@x

þ 1
2
quv @u

@x
þ u

@p
@x
þ p

@u
@x
: ð49Þ
Therefore, for product quantities in the above skew-symmetric equations, define their midpoint reconstruction by
f̂gskew
jþ1=2 ¼

1
2

f̂gdiv
jþ1=2 þ f̂gprod

jþ1=2

� �
ð50Þ
where
f̂ div
jþ1=2 ¼ aðfjþ2 þ fj�1Þ þ ðaþ bÞðfj þ fjþ1Þ ð51Þ
and
f̂gprod
jþ1=2 ¼ bðfjgjþ1 þ fjþ1gjÞ þ aðfjþ2gj þ fj�1gjþ1 þ fjgjþ2 þ fjþ1bj�1Þ: ð52Þ
All other quantities are reconstructed by the simple divergence formulation of (51). The choice of b ¼ 1=2� 2a and
a ¼ �1=12 leads to 4th order finite differences. Alternatively, Hill and Pullin [10] have optimized b and a for the purpose
of minimizing dissipation of turbulent kinetic-energy over a spectrum of scales for application with an explicit turbulence
model.

4.3.4. WENO-Roe solver
Riemann solvers represent a popular subset of upwinding numerical methods for hyperbolic partial differential equa-

tions. The basic idea behind such solvers is to reconstruct midpoint fluxes through solution to a Riemann problem between
biased interpolations of left and right states. In general, for nonlinear equations such as the Euler equations, solution to Rie-
mann problems are complex and can only be solved numerically at great expense. Linearization of the Riemann problem
therefore presents an attractive alternative for providing quick approximate solutions. However, producing a robust and
meaningful linearization is not a straight forward task. For perfect gases Roe’s approximate Riemann solver [27] provides
a meaningful way to linearize the Riemann problem. Extension of the methodology for more general materials, such as met-
als described by Mie-Grüneisen equations of state, is not necessarily achievable analytically. Despite this drawback, a Roe
like linearization remains useful, retaining a moderate level of robustness while reducing the overall cost associated with
solving the Riemann problem [30,31]. In light of this, our approach to reconstructing midpoint quantities is as follows: First,
apply a 3rd order single dimension WENO interpolation of primitives,
u ¼ ðq;u; v;w; p;CH; pH; eH;w1; . . . ;wn�1Þ; ð53Þ
to form left and right states qL and qR . Then, following the approach of Shyue [31] we approximate the zero-characteristic
quantities associated with the Riemann problem between these states by Roe linearization, a process described in the
remainder of this section in detail.

Linearization of the Riemann problem associated with a conservative hyperbolic partial differential equation is most eas-
ily achieved by considering the nonconservative form. For the multicomponent Euler equations,
@q
@t
þ AFðqÞ

@q
@x
þ AGðqÞ

@q
@y
þ AHðqÞ

@q
@z
¼ 0; ð54Þ
where AFðqÞ;AGðqÞ;AHðqÞ are the Jacobian matrices defined by
AFðqÞ ¼
@FðqÞ
@q

; AGðqÞ ¼
@GðqÞ
@q

; AHðqÞ ¼
@HðqÞ
@q

: ð55Þ
In approximating the solution to the Riemann problem between states qL and qR Roe [27] linearized the Jacobian, eigenvec-
tors, and eigenvalues by a weighted average of fundamental quantities:
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x̂ ¼
ffiffiffiffiffiqL
p

xL þ
ffiffiffiffiffiffiqR
p

xRffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p : ð56Þ
Shyue [31] has adapted Roe’s linearization for application to multiphase flows with Mie-Grüneisen equations of state. We
presently use his adaption of Roe’s solver and proceed to describe the minimal necessary detail for understanding the solu-
tion of linear Riemann problems leading to midpoint value reconstruction.

For linear equations the solution of a Riemann problem consists of a series of discontinuous jumps across characteristic
waves propagating at the rate of their eigenvalues k. In practice the magnitude of the jumps can be determined by requiring
conservation across all characteristic waves,
Ra ¼ qR � qL ¼ Dq: ð57Þ
The approximate zero-characteristic state needed for obtaining midpoint quantities of interest is then
q� ¼ qR � R�1aþ ð58Þ
¼ qL þ R�1a�; ð59Þ
where
aþj ¼
aj if kj > 0
0 otherwise

�
ð60Þ
and
a� ¼ a� aþ: ð61Þ
4.3.5. Limiter
It is not necessary to use the matrix norm kAkp in (27) explicitly. A constant of proportionality is acceptable,
Uj ¼ Bkwj � Crkp: ð62Þ
Here we take the p ¼ 2, corresponding to the L2 norm. It is of practical interest to limit the range of possible values of U,
Umin 6 Uj 6 Umax: ð63Þ
The values of Umin and Umax should be chosen congruently with the constant of proportionality B in order to give the desired
amount of dissipation. Too large a value of B will push the limiter beyond Umax, voiding any possibility of retaining the de-
sired convergence rate in smooth flows. We find that B � 1 is typically adequate for maintaining 0 6 Uj 6 1. The upwinding
scheme used along with shock strength and the equation of state are all contributing factors to the appropriate determina-
tion of a practical Umax.

In evaluating the deviation norm of Eq. (62) we again use the 5th order WENO approach in Eq. (32). We use density as the
single variable by which to measure smoothness, which is generally robust, except in the rare case of a constant density dis-
continuity. It is important to note that (32) contain an asymmetric odd number of points about the midpoint jþ 1=2. There-
fore, if applied directly, solutions that should be symmetric under coordinate inversion would not sustain symmetry
numerically. Limiter symmetry can be restored by noting that the above is actually UþJ and that a U�j also exist from a WENO
reconstruction for the same midpoint based on ðjþ 1Þ � 1=2. Taking the mean Uj ¼ 1

2 U�j þUþj
� �

then eliminates limiter
asymmetry.

4.3.6. Temporal discretization
In terms of simplicity and cost effectiveness, explicit Runge–Kutta temporal discretization present an ideal approach.

Whereas upwinding methods generally remain stable with simple 1st order explicit time stepping when applied to hyper-
bolic partial differential equations, center-difference schemes require additional consideration for stability. Third-order or
higher temporal discretization is in fact necessary [23]. Following Pantano et al. [23], we primarily utilize the storage effi-
cient third order total variation diminishing (TVD) Runge–Kutta [9],
qð1Þ ¼ qn þ 1
2

DtLðqnÞ; qð2Þ ¼ 3
4

qn þ 1
4

qð1Þ þ 1
4

DtLðqð1ÞÞ; qnþ1 ¼ 1
3

qn þ 2
3

qð2Þ þ 1
6

DtLðqð3ÞÞ: ð64Þ
4.3.7. Adaptive mesh refinement
We presently utilize the California Institute of Technology’s VTF AMROC [7] software to extend our methodology for par-

allel AMR application. AMROC is based on the parallel block structured AMR algorithm of Berger and Oliger [6,5]. The ap-
proach divides the domain into patches of various spatial resolutions, interpolating boundary conditions between levels.
The same solver is applied to each patch while maintaining a constant spatial to temporal refinement ratio. We find that
extension of our method within this framework achieves a reasonable level of success. We note, however, that significant
variation in numerical method cost can lead to severe loss in parallel performance efficiency for certain problems. Optimi-
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zation of hybrid methods in an adaptive mesh refinement context presents an additional level of complexity for load balanc-
ing that is not addressed presently.

4.3.8. Hybrid switching criterion
In practice the limiter method described in previous sections will never result in the center-difference scheme. Further-

more, if applied uniformly in the domain the computational cost would remain the same at each point even if the lower or-
der upwinding scheme is barely used and not truly necessary. Since the center-difference scheme is cheap computationally
relative to the upwinding Roe Riemann solver, overall code efficiency can be improved by only applying the limiter method
to regions identified to contain discontinuities. A variety of approaches for flagging regions with discontinuities have been
developed in the hybrid literature [10,23]. Here we follow a Lax-entropy-based approach for detecting shocks [18], identi-
fying regions of interest by checking for alignment of pressure and entropy gradients,
ðquÞjþ1 � ðquÞj
qjþ1 � qj

 !
ðpjþ1 � pjÞ < 0; ð65Þ
and using a Mach-divergence tolerance criterion,
ujþ1 � uj

c0

���� ���� > tol: ð66Þ
Regions with sharp scalar gradients are flagged by a simple gradient tolerance,
wjþ1 � wj

�� �� > tol: ð67Þ
Typically tolerance values are on the order of a percent, corresponding to waves slightly stronger than weak shocks and sca-
lar variations larger than those treatable by a center-difference. The above provides a fairly robust set of criterion for flagging
regions in need of upwinding. Occasionally a sharp gradient not associated with a shock or scalar quantity may be present. In
such cases curvature based detection may be used [10,23],
qjþ1 þ qj�1 � 2qj

�� ��
qjþ1 þ qj�1 þ 2qj

�� �� > tol: ð68Þ
In general, determination of the best flagging criterion and associated tolerance value is solution and scheme dependent. To
protect further against oscillations it is useful to flag several closest neighboring points. Additionally, when applied in an
adaptive mesh context, oscillations can occur at coarse-fine boundaries, making it desirable to add dissipation locally by
use of an upwinding method [23].

4.3.9. Carbuncle phenomenon
Structured grids can lead to carbuncle phenomenon when strong, slow moving discontinuities aligned with a structured

grid are present [8,25,28]. The classic case of carbuncle phenomenon is observed for inviscid Mach 15.3 perfect gas flow
around a cylinder. The source of the name carbuncle was taken from the nonphysical carbuncle shaped bow shock achieved.
Directional dissipation variation leading to grid induced instability is widely accepted as the source [28]. In perfect gases the
phenomenon is associated with strong shocks. More generally, the problem is a result of strong grid aligned gradients in
wave speeds. In multicomponent flows with exotic equations of state it might be expected that carbuncle phenomenon oc-
cur more readily.

We have found that for single mode Mach 1.5 Richtmyer–Meshkov instability between mid-ocean ridge basalt (MORB)
and Molybdenum modeled by a shock-Hugoniot Mie-Grüneisen equations of state, features indicative of a carbuncle phe-
nomenon are present in the form of a notch at the spike tip (Fig. 3(a)). The simulation corresponds to a centerline single
mode cosine perturbation of a MORB-Molybdenum contact with wavelength k ¼ 0:5 m and amplitude h0 ¼ 0:05 m. Initially
the states on either side of the contact are in mechanical equilibrium, corresponding to q0; p0, and e0 given in Table 2. A Mach
1.5 shockwave travels downward through the MORB, eventually reaching the diffuse zone where it deposit vorticity and
yields transmitted and reflected shocks. The simulation is performed in a frame of reference corresponding to zero velocity
after post shock-interface interaction when no interface perturbation is present.

A key characteristic of carbuncle phenomenon is sensitivity to grid-flow alignment. To demonstrate that the feature ob-
served in Fig. 3(a) is nonphysical, we performed a simulation with a 45� rotation of the flow with respect to the grid. The
results, seen in Fig. 3(b), show an alleviation of the notch as well as a considerable change in the general shape of contours,
indicating significant dependence of dissipation on grid orientation.

Presently, to produce a fix for the carbuncle phenomenon we follow the approach of Sanders [28]. For approximate lin-
earized Riemann solvers the local directional dissipation matrix is given by
M ¼ RjKjR�1: ð69Þ
To correct the problem, Sanders [28] adjusts the eigenvalues K in (69) by an amount equal to the maximum local grid var-
iation in wave speed



Fig. 3. MORB-Molybdenum Mach 1.5 single cosine mode perturbation Richtmyer–Meshkov instability simulation results exhibiting carbuncle like features
ðt ¼ 37 msÞ. (a) A nonphysical notch at the spike tip is visible. (b) Rotating the flow by 45 degrees with respect to the grid removes the notch.

Table 2
Hugoniot constants for various materials.

q0 p0 C0 c0 r q T0

Aluminum 2785 kg/m3 0.0 2.0 5328 m/s 1.338 1.0 298 K
MORB 2660 kg/m3 0.0 0.18 2100 m/s 1.68 1.0 1673 K
Molybdenum 9961 kg/m3 0.0 1.56 4700 m/s 1.43 1.0 1673 K
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gH
iþ1=2;j ¼ maxðgiþ1=2;j;gi;jþ1=2;gi;j�1=2;giþ1;jþ1=2;giþ1;j�1=2Þ; ð70Þ
where
giþ1=2;j ¼
1
2
jci;j � ciþ1;jj þ

1
2
jui;j � uiþ1;jj: ð71Þ
The corresponding added amount of dissipation is then
gH
iþ1=2;jDqiþ1=2;j � gH

i�1=2;jDqi�1=2;j

Dx
; ð72Þ
where Dqj ¼ qR � qL is the difference in biased stencil reconstructions. We find that the above correction works adequately at
removing the notch observed in Fig. 3 when applied with a low-order linear Riemann solver. However, the solver described
currently is not a true linearization of the Euler equations since the blending of nonlinear center-difference and Riemann
reconstruction has no definable corresponding left and right state or linearized Jacobian matrix bA. To address these issues
we make a multidimensional H-correction to the limiter to promote scheme invariance under grid rotation,
UH
iþ1=2;j ¼ U2

iþ1=2;j þmaxðU2
i;jþ1=2;U

2
i;j�1=2;U

2
iþ1;jþ1=2;U

2
iþ1;j�1=2Þ

� �1=2
: ð73Þ
We follow this up by amplifying the limiter at sonic points with large wave speed variation,
UH0
iþ1=2;j ¼

gH
iþ1=2;j=jkj

H
max

jkjHmin=jkj
H
max þ e

 !1=2

UH
iþ1=2;j; ð74Þ
which promotes dissipation through the steepest parts of shock waves where the limiter often drops bellow the maximum,
resulting is an undesirable region with low dissipation. We then add an amount of dissipation equal to
UH
iþ1=2;jgH

iþ1=2;jDqiþ1=2;j �UH
i�1=2;jgH

i�1=2;jDqi�1=2;j

Dx
: ð75Þ
We find that doing so works reasonably well at mitigating the carbuncle like notch (Fig. 4), but also yields a considerable
increase in overall numerical dissipation.



Fig. 4. MORB-Molybdenum Mach 1.5 single cosine mode perturbation Richtmyer–Meshkov instability simulation results with present H-correction for
carbuncle implemented for t ¼ 37 ms. The carbuncle like notch observed in Fig. 3 is smoothed over.
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4.4. One-dimensional test problems

4.4.1. Simple wave
First, to demonstrate how the limiter method behaves on its own we apply it without hybridization to a simple breaking

wave in a one meter long periodic slab of mid-ocean ridge basalt (MORB). The initial conditions are continuous and periodic
in nature, corresponding to states in tension along the Murnaghan isentrope. For continuous initial conditions, the single
phase Euler equations in one dimension yield the solution [13]
uðqÞ ¼ �
Z

cðqÞ
q

dq ð76Þ
along characteristics defined in space and time from
x ¼ tðu� cðuÞÞ þ f ðuÞ: ð77Þ
Landau and Lifshitz [13] demonstrate a simple periodic single mode wave solution for isentropes of a perfect gas. The solu-
tion is shown to become increasingly steep, eventually forming shocks. For metals described by Mie-Grüneisen equations of
state with reference state curves given by a Hugoniot, an analytic equation for isentropes is not generally attainable. How-
ever, the use of a Murnaghan isentrope for extending the equation of state for expanded states provides a single isentrope in
the form
pðq; s ¼ s0Þ ¼ Aqa þ B: ð78Þ
Solution to the Euler equations for this isentrope in terms of velocity is then
uðqÞ ¼ 2
ffiffiffiffiffiffi
aA
p

a� 1
qa�1

2 þ const: ð79Þ
For our initial conditions we chose a simple sine wave for the initial velocity profile,
uðx; t ¼ 0Þ ¼ U0 sinðkxÞ;
f ðuÞ ¼ 1

k sin�1ðu=UÞ;
ð80Þ
with U0 ¼ 60:34 m=s, corresponding to a density variation of 2500:4 6 q 6 2659:7 kg=m3. Simulation results are seen in
Figs. 5 and 6 for CFL ¼ 0:95 and Dx ¼ 0:01 m. For early times the limiter remains relatively small yielding very little numer-
ical dissipation. As the shockwave begins to form at the inflection point the limiter increases locally to introduce the desired
character of the upwinding Roe solve, maintaining a relatively smooth solution.

For smooth solutions such as the simple wave before a shock forms, with the use of 4th order SSP RK-4 temporal discret-
ization, the numerical convergence rate of the presently described methodology should be 4th-order. To demonstrate the
convergence rate we calculated an approximation to the L2 error norm in density at t ¼ 0:5 ms for various numbers of points
while maintaining a fixed CFL of 0.95. To isolate the numerical method we do so without hybridization. The results of the
study are given in Table 3. The convergence order is seen to be mesh-size dependent, asymptotically approaching the ex-
pected 4th order rate of convergence as the number of points increases.



Fig. 5. Simple wave simulation density and limiter profiles at t ¼ 0:5 ms. Simulation CFL ¼ 0:95 and Dx ¼ 0:01 m. The dashed line refers to the initial
conditions. As the solution progresses in time the wave slowly begins to break, inducing a gradual increase in the limiter locally centered around the
steepening inflection point.

Fig. 6. Simple wave simulation density and limiter profiles at t ¼ 1 ms. CFL ¼ 0:95 and Dx ¼ 0:01 m. The dashed line refers to the initial conditions. As time
progresses and a shock forms the limiter increases to introduce more dissipation locally, maintaining a relatively smooth flow on either side of the shock.

Table 3
Simple wave solution density L2 error norm and convergence order for t ¼ 0:5 ms. As the grid is refined, the order of convergence is seen to approach the
expected 4th order value.

N L2 error L2 order

50 3.247172e�1 –
80 6.952834e�2 3.2792
100 3.173425e�2 3.5149
120 1.561053e�2 3.8903
150 6.574074e�3 3.8763
200 2.105829e�3 3.9572
300 4.161969e�4 3.9986
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4.4.2. Aluminum impact problem
Next we consider a single phase test problem consisting of an impact between two slabs of Aluminum in one dimension

[31]. A semi-infinite slab of Aluminum with zero stress, corresponding to q0; p0, and e0 given in Table 2, travels leftward at
2000 m/s striking a pre-compressed semi-infinite slab of Aluminum with density q ¼ 4000 kg=m3 and pressure
p ¼ 7:98 GPa. Both slabs are modeled as fluids with a single Mie-Grüneisen equation with Hugoniots as reference state
curves. The solution to this Riemann problem consist of a reflected and transmitted shock along with a constant pressure
and velocity density jump between them.

Fig. 7 presents results at t ¼ 50 ls for simulation of the problem with 100 points and an adaptively maintained
CFL ¼ 0:95. The density, velocity, and pressure all remain relatively smooth. The limiter, plotted bottom right in Fig. 7, dem-
onstrates the necessary increase near the reflected and transmitted shocks. At the density contact the limiter is slightly less
active, a desirable result that is a consequence of the nature of the limiter which decreases as numerical diffusion smooths
out the flow. Ideally a hybrid switching criterion would indicate when the center-difference scheme is solely adequate to
maintain the feature, however, this is hard to achieve this in practice.



Fig. 7. Results from a one dimensional simulation of an Aluminum impact problem with 100 points and CFL ¼ 0:95 at t ¼ 50 ls. The dashed line refers to
initial conditions and the solid line to the exact solution. The limiter adjusts at the reflected and transmitted shocks and interface, maintaining solution
smoothness.
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4.4.3. Mach 2.5 MORB-Molybdenum shock-contact problem
In the interest of later making comparison to a two-dimensional Richtmyer–Meshkov instability simulation, we now con-

sider a one dimensional shock-contact multiphase test problem involving two semi-infinite slabs that make diffuse contact
at the origin. To the left is Molybdenum and the right MORB, states corresponding to q0, p0, and e0. Mach 2.5 shock wave
travels through the MORB to the left starting from x ¼ 0:5 m. The shock eventually reaches the origin yielding a transmitted
shock in the Molybdenum slab and reflected shock back into the MORB. The diffuse contact at the origin is defined by smear-
ing the initial mixture fraction
wðx; t ¼ 0Þ ¼ 1
2
þ 1

2
tanhðbxÞ; ð81Þ
where b ¼ 50 m�1 was taken. The states through diffuse contact are given by the ad hoc mixture rule (18).
To keep the contact well within the domain, we perform a simulation in an inertial frame of reference that gives zero

velocity between the reflected and transmitted shocks. Results for 100 points and adaptively maintained CFL of 0.95 at
t ¼ 0:18 ls are seen in Fig. 8. Again it is observed that the density, velocity, pressure, and initial mixture fraction maintain
smooth profiles.

4.5. Two-dimensional test problems

4.5.1. Planar Richtmyer–Meshkov instability
To demonstrate the methodology in two dimensions, we simulate planar Richtmyer–Meshkov instability involving a sin-

gle cosine mode perturbation of an interface between Molybdenum and MORB. A Mach 2.5 shock wave travels from top to
bottom striking a diffuse interface with initial mixture fraction perturbation described by
wðx; y; t ¼ 0Þ ¼ h0

2
cosð2px=kÞ½1þ tanhðbðy� y0ÞÞ�; ð82Þ
where the wave length k ¼ 0:5 m;h0 ¼ 0:05 m;y0 ¼ �0:05 m, and the factor b ¼ 50 m�1. The ad hoc mixture rule (18) applied
to q0; P0, and E0 is then used to define the initial states in the diffuse region. The shock begins at position y ¼ 0:5 m and trav-
els downward. Unlike the one dimensional or unperturbed problem, the shock deposits vorticity in addition to creating re-
flected and transmitted shock waves. The vorticity deposited causes the perturbation to grow in time and eventually roll up,
making the solution complex in nature.

For the purposes of simulation, a domain of 0.5 m wide by 5 m tall was utilized with periodic boundary conditions in the
x-direction. A base grid of 32 by 320 points was used with 3 levels of two times refinement corresponding to an effective



Fig. 8. Mach 2.5 MORB-Molybdenum shock-contact problem centerline density, velocity, pressure, and mixture fraction plots for t ¼ 0:18 ms, shortly after
shock-interface interaction. Simulation performed with 100 points and CFL ¼ 0:95 maintained adaptively. The dashed line refers to initial conditions and
the dash-dot line to a simulation with 1000 points. Transmitted and reflected shocks are observed, leaving a stationary contact in between.
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resolution of 256 by 2560. For convenience the simulation was performed in a frame of reference that would give zero veloc-
ity between the reflected and transmitted shocks if the interface were unperturbed. A CFL of 0.9 is maintained adaptively
through out the simulation. Fig. 9(a) displays a density contour plot at time t ¼ 1:9 ms. Reasonable resolution of features
in the roll up is observed. Fig. 9(b) shows where the limiter scheme and purely center-difference schemes are active, denoted
by grey and white, respectively. The material interface and coarse-fine adaptive mesh refinement boundaries are tagged for
application of the full limiter scheme. Although hard to notice, some asymmetry in the roll up can be observed and is due to
asymmetric AMR domain decomposition. To better show how the limiter methodology and solution behave, centerline plots
of density, vertical velocity, pressure, and initial mixture fraction are presented in Fig. 10 for t ¼ 0:18 ms, not long after
shock-interface interaction. The time corresponds to those of the results for the one dimensional shock-contact problem seen
in Fig. 8. The features of the centerline for the two-dimensional problem are considerably more complex than those of the
associated one dimensional problem.

4.5.2. Planar Richtmyer–Meshkov instability with reshock
Here we take the same initial conditions described in the previous section, but now allow the transmitted shock to reflect

off a wall 3.8 m away from the initial interface position of y ¼ �0:05 m. The reflected shock eventually reaches the growing
perturbed interface, depositing more vorticity and yielding transmitted shocks and reflected expansion waves. Fig. 11 gives
Schlieren density contours for time t ¼ 1:8 ms as calculated by the current 4th-order method and a purely 3rd-order WENO
reconstruction method. The time is well after reshock occurs and demonstrates finer roll up for the present 4th-order
methodology.

A plot of the amplitude as a function of time for the initial conditions simulated with 3rd-order WENO reconstruction and
present 4th-order methodology is given in Fig. 12. For Richtmyer–Meshkov instability, despite the complexity of the solution,
a simple prediction for early time amplitude growth rate can be made. First order linear analysis of an impulsively accelerated
incompressible perturbed interface, first carried out by Meshkov [20,26], predicts that the amplitude growth rate is given by
_h ¼ hþ0 AþkDu; ð83Þ
where hþ0 is the post-shock perturbation amplitude, Aþ ¼ qþ2 � qþ1
� 	

= qþ2 þ qþ1
� 	

is the post-shock Atwood ratio, k ¼ 2p=k is
the initial perturbation wave number, and Du is the change in velocity of the interface imparted by the shock associated with
the unperturbed shock-contact problem. Making a comparison to Richtmyer’s impulsive theory therefore requires a working
definition for perturbation amplitude. Before roll up occurs, one possible way to define the interfaces centerline is
ycdðx; tÞ ¼
R1
�1 ywðx; y; tÞð1� wðx; y; tÞÞdyR1
�1 wðx; y; tÞð1� wðx; y; tÞÞdy

: ð84Þ



Fig. 10. Mach 2.5 MORB-Molybdenum Richtmyer–Meshkov instability centerline density, velocity, pressure, and scalar mixture fraction plots for
t ¼ 0:18 ms, shortly after shock-interface interaction. The dashed line refers to initial conditions. The solution structure is considerably more complex than
that of the one dimensional shock-contact problem seen in Fig. 8. Transmitted and reflected shocks are observed, but with considerably more variation in
properties in between due to multidimensional effects.

Fig. 9. Mach 2.5 MORB-Molybdenum single mode Richtmyer–Meshkov instability density contour plot (a) and hybrid switching zone plot (b) for
t ¼ 1:9 ms. Simulation performed with a base grid of 32 by 320 points with 3 levels of two times refinement. Adaptive time stepping was used to maintain a
CFL of roughly 0.9. The limiter scheme coverage is indicated by grey regions of figure (b), namely at the contact and coarse-fine refinement boundaries.
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The instability amplitude is then simply
hðtÞ ¼ 1
2
ðyspikeðtÞ � ybubbleðtÞÞ; ð85Þ



Fig. 11. Mach 2.5 MORB-Molybdenum single mode Richtmyer–Meshkov instability Schlieren contour plot for t ¼ 1:8 ms calculated with (a) simulations
with present method and (b) primitive third-order WENO reconstruction method. Simulation performed with a base grid of 32 by 320 points with 3 levels
of two times refinement. Adaptive time stepping was used to maintain a CFL of roughly 0.9. The present scheme demonstrates slightly finer detail in small
scale structures.

Fig. 12. (a) Mach 2.5 MORB-Molybdenum Richtmyer–Meshkov instability amplitude growth for third-order WENO and present 4th Order methodology,
denoted by dashed and solid lines respectively. The dash-dot line represents a fit of data in the linear growth regime. The growth rate obtained is
4:914� 103 s�1, closely matching the simplified impulsive model of Richtmyer which predicts a growth rate of 5:313� 103 s�1. (b) The difference in
amplitudes as predicted by third-order WENO and present 4th order methodology. After reshock the two methods demonstrate increasing difference in
predicted amplitude due to greater dissipation of small scales by the WENO method.
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where yspikeðtÞ and ybubbleðtÞ are
yspikeðtÞ ¼ maxðycdðx; tÞÞ; � k
2
< x <

k
2
;

ybubbleðtÞ ¼ minðycdðx; tÞÞ; � k
2
< x <

k
2
:

ð86Þ
Making a linear fit of the data for early times yields a calculated impulsive growth rate of 4:914� 103 s�1. Alternatively, the
predicted impulsive growth rate from Eq. (83) is _h=hþ0 ¼ 5:313� 103 s�1, which agrees quite well with simulation results de-
spite the simplicity of the model. For times before reshock, the amplitudes calculated with 3rd-order WENO and present 4th-
order method agree well. After reshock the measured amplitudes begin to demonstrate discrepancies due to variation in
small scales responsible for an important part of vorticity deposition upon reshock [14].

5. Conclusions

With application to the multiphase Euler equations in mind, we have developed a robust limiter methodology inspired by
the deviation of WENO weights from ideal that is well suited for hybrid solvers of any spatial order. The limiter generates a
smooth transition between the application of a low dissipation scheme in smooth regions and upwinding dissipative scheme
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where discontinuities exists, an important property that helps minimize spurious oscillations that can arise in hybrid
schemes. Additionally, whereas conservative flux-splitting schemes fail to maintain the fidelity of constant pressure-velocity
multiphase flows, the use of such a generalized limiter allows for the tracking of primitive variables which prevent degra-
dation of such solutions.

To demonstrate the practicality of the methodology, we developed a spatially 4th order version for the multiphase Euler
equations with special adaption for an isotropic Mie-Grüneisen equation of state in one and two dimensions and imple-
mented it using the California Institute of Technology’s VTF (Virtual Test Facility) AMROC [7]. To prevent oscillations in mix-
tures a set of redundant primitive quantities that depend on density and scalar mixture fraction are tracked. For the low
dissipation scheme a 4th-order, skew-symmetric difference scheme is utilized. Upwinding is achieved by a 2nd-order Roe
Riemann solver blended in with a limiter given by the deviation of weights associated with a 5th-order WENO. Temporal
discretization is achieved by SSP-TVD 3rd order Runge–Kutta.

In one dimension we have successfully applied the scheme to single phase and multiphase flows with shock waves. In
each case, the limiter adjusts to introduce dissipation at shocks, maintaining relatively smooth flow on either side. For
smooth flows we demonstrated that the 4th order convergence rate is achieved. In two dimensions we applied the solver
to simulate Mach 2.5 single mode Richtmyer–Meshkov instability in MORB and Molybdenum modeled by shock-Hugoniot
Mie-Grüneisen equations of state. For further validation, comparison of simulation perturbation amplitude growth rate and
theoretical impulsive growth rate were made, demonstrating good agreement.

In the future, we plan to apply the methodology to further study Richtmyer–Meshkov instability in solids. Additionally,
we simulate problems where solids have elasticity and an underlying Mie-Grüneisen equation of state.
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